如何把大量物理知识塞给AI?EIT和北大团队提出「规则重要性」概念(用物理的方式表白)

AIGC动态欢迎阅读

原标题:如何把大量物理知识塞给AI?EIT和北大团队提出「规则重要性

」概念

关键字:规则,模型,知识,数据

,重要性

文章来源:机器之心

内容字数:5565字

内容摘要:

将 ScienceAI设为星标

第一时间掌握

新鲜的 AI for Science 资讯编辑 |ScienceAI

深度学习模型因其能够从大量数据中学习潜在关系的能力而「彻底改变了科学研究领域」。然而,纯粹依赖数据驱动的模型逐渐暴露出其局限性,如过度依赖数据、泛化能力受限以及与物理现实的一致性问题。

例如,美国OpenAI

公司开发的文本到视频模型Sora因深刻理解事物在现实中的存在方式而受赞誉,被视为AI领域的飞跃。尽管能利用大量视觉数据生成逼真图像和视频,Sora却被认为未掌握物理定律,如重力和玻璃破碎等。

面对这一问题,将人类知识融入深度学习模型是一个潜在的解决方案。将先验知识与数据一起使用,能够提升模型的泛化能力,从而创建能够理解物理规律的「知情机器学习」(Informed machine

learning)模型。

然而,目前对深度学习中知识的价值仍缺乏深入理解,确定哪些先验知识(包括函数关系、等式和逻辑关系等)能有效地融入模型以进行「预学习」,已成为一项亟待解决的难题。同时,盲目地整合多项规则可能会引发模型的崩溃。这种局限性制约了对数据与知识关系的进一步探索。

针对这一问题,东

原文链接:如何把大量物理知识塞给AI?EIT和北大团队提出「规则重要性」概念

联系作者

文章来源:机器之心

作者微信:almosthuman2014

作者简介:专业的人工智能媒体和产业服务平台

0
分享到:
没有账号? 忘记密码?