值得你花时间看的扩散模型教程,来自普渡大学(扩散现象是什么)

AIGC动态欢迎阅读

原标题:值得你花时间看的扩散模型教程,来自普渡

大学

关键字:普渡,模型,图像,算法

,教程

文章来源:机器之心

内容字数:2376字

内容摘要:

机器之心报道

编辑:小舟、泽南Diffusion 不仅可以更好地模仿,而且可以进行「创作」。

扩散模型(Diffusion Model)是图像生成模型的一种。有别于此前 AI 领域大名鼎鼎的 GAN、VAE 等算法,扩散模型另辟蹊径,其主要思想是一种先对图像增加噪声,再逐步去噪的过程,其中如何去噪还原图像是算法的核心部分。而它的最终算法能够从一张随机的噪声图像中生成图像。近年来,生成式 AI 的惊人增长为文本到图像生成、视频生成领域等许多令人兴奋的应用提供了支持。这些生成工具背后的基本原理是扩散的概念,这是一种特殊的采样机制,克服了以前的方法中被认为难以解决的一些缺点。

最近,来自普渡大学的 Stanley H. Chan 发布了一份扩散模型的教程《Tutorial on Diffusion Models for Imaging and Vision》,对该方向技术进行了直观详尽的解释。

本教程的目标是讨论扩散模型的基本思想,目标受众包括对扩散模型研究,或应用这些模型正在解决其他问题的本科生和研究生。文章链接:https://arxiv.org/abs/2403.18103

该教程包括

原文链接:值得你花时间看的扩散模型教程,来自普渡大学

联系作者

文章来源:机器之心

作者微信:almosthuman2014

作者简介:专业的人工智能媒体和产业服务平台

0
分享到:
没有账号? 忘记密码?